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In the present paper we discuss the harmonic summability of Laguerre series 
associated with a Lebesgue-measurable function at the frontier point x = 0. 

1. Let f(x) be a Lebesgue-measurable function such that the integral 

o°°e-Xx~f(x)L(,~)(x)dx, a > 

exists, where /_J.~)(x) denotes the nth Laguerre polynomial of  order c~. 

The Laguerre series corresponding to this function f(x) is 

(I.1) f(x) ,,, ~ a,~,~'(x). 
n = O  

in which 

(1.2) 

and 

(1.3) 

a. = {[ (a + ~A'.}-l f o  e-ry~f(y)L(~.)(y)dy. 

A " = (  n+~)n  ~n~"  

A sequence {S.} is said to be summable by harmonic means, if 

.-,~olim (logn)-lk=~ °= k+lS"-k 

exists. 

2. The object of  this paper is to investigate the harmonic summability of 

Laguerre series (for certain values of ~) at the frontier point x = 0. 

We write 

~)(y) = { [ (o~ + 1)}-~e-r[f(y) - A]y ~. 
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We establish the following theorem: 

THEOREM. For - ½  > ct >_ - ~ , t h e  series (1.1) is summable  by harmonic  

means at the point  x = 0 to the sum A ,  provided, 

t 

(2.1) O~(t) =_ 14~(y)ldy = o(t'+~), as t ~ 0 .  

(2.2) 

and 

(2.3) 

. 

f :  e,12 y-~12- 3.14 (y) l dy = o(n-~/2- ,/4 ) 

£ °°e'/2 y-  '/a l (~(y) l d y = o(1). 

We require the following lemmas in the proof of our theorem: 

LEMMA 1. [1, p. 175]. Let  ~ be arb i t rary  and real, c and co f i xed  positive 

constants, n ~ oo, then 

(3.1) 
~14~ c 

~:)(x)  = [ x - ~ l ~ - ~ ' ° ( n ~ / 2 -  "' n <= x <_ co; 

L O(n' ) ,  0 < x < c/n.  

LEMMA 2. [1,  p. 238].  I f  ~ be real and arbi trary ,  co > O, 0 < 11 < 4 ,  then 

f o r  n ~ oo, we have 

(3.2) max e-~12x ~/2 +'41L(:)(x)  ] 

Fn ~/2-1/4 , co < x < (4--q)n; 
1 
Ln "12-1/12, x >- 09. 

4. Proof of the theorem. Let S, denote the nth partial sum of the series (1.1) 

at the point x = 0, then 

(4.1) J: S,  = e - ' y ' f ( y )  ~ I ~ ( y ) d y ,  
m = O  

f0 = e-Yy~f(y) L~ + 1) ( y )dy ,  

Thus, by the definition 
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(4.2) 

LAGUERRE SERIES 

(log n) -1 ~ {S,_k -- A} 
k = 0  

= (log n) - 1 
k = 0  

fo" = 0 o g n ) - I  ~ (y )  

If] fJ Y? (4.3) = (log n) -1 + + 
• /n 

(4.4) = A + B + C + D ,  

say. Now by the help of Lemma 1, we have 

(4.5) A 
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-i iOOe_ry,[f(y) A] r('+') -- ~.-k (y)dy 

-~-l~lJ,~+_:)(y)dy. 
k = 0  

= ( logn)  - I  ~ 1 riot/. k=o E - ~  I@(Y)l°(n-k)'+ldY 

(log n)- lO(n~+ 1 log n) 
c/rl 

= I~(y) ldy 
dO 

(4.6) = 0(1), 

by the hypothesis (2.1). 

Again, using Lemma 1, we get 

(4.7) B = (logn) -1 ~ O(n-k)(~'+l)/z-lm fc ~ k=o k + 1 . l,, [(a(y)[y-(~'+I)/2-1/4dy 

= (l°gn)-~ ~ (nO(n-kf/2+'/4--k)--~+ i) f=,o } qS(y)l y-~/2-3/4 dy 
k = 0  /n 

= (log n)-  1. O(n,/Z + 5/4). O(n- 1 log n). 

+ f o ~(Y)Y-~/2-5/4dy ] 
/n 

ntegrating by parts. 

= o(1) + o(n ~/2÷1/4) f'~ 
de /n 

by the hypothesis (2.1). 

(4.8) = o(1). 

Now, using Lemma 2, we get 

y~/2- 3/4 dy. 
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(4.9) 
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C = (logn) - t  f ~  [~b(y)t k=O ~ ~--~eVl2(n-k)(a+t)12-tl+Y-(~+t)t2-~dY 

= (l°g n)- 1 fl e']~y-'~m'-~]+lq~(y)l ~=Y"o (n°(n- k)~]~+~]+- k)(k + 1~ dy 

[ ) = (log n) - I  O n ~/2 +s/4 • 1 yl2y-~/2-a/, ~=o (~ - k) (k + 1) I*(),__y_ Idv,_ 
= ( log n)- ~O(n "/2 + sl+) O(n- ~ log n) o(n -'/2-1/4), 

by the hypothesis (2.2). 

(4.10) = o(1). 

Finally, by the second condition of Lemma 2, we find 

L+I (4.11) D = (logn) -1 ~(Y)I ~ 1 k = o - -~-~(n - k) (~+ 1)12- I/~2y-(~+ t)/2- l],ey/2dy 

= (logn)_lO(n~/2+s/12) ~ 1 f~o e,]2y-v3l,q~(y)l dy 
k=O k "~ 1 a/2+5112 

Y 

= (logn)-lO(n~/2+sla210gn)n-'/2-sl 1 e']2y-1]3l~(y) ldy ~ 

(4.12) = o(1), 

by the hypothesis (2.3). 

This demonstrates the theorem. 

I am highly indebted to Dr. G. S. Pandey for his kind advice during the pre 

paration of this paper. 
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